The Hosoya-Wiener Polynomial of Weighted Trees
نویسنده
چکیده
Formulas for the Wiener number and the Hosoya-Wiener polynomial of edge and vertex weighted graphs are given in terms of edge and path contributions. For a rooted tree, the Hosoya-Wiener polynomial is expressed as a sum of vertex contributions. Finally, a recursive formula for computing the Hosoya-Wiener polynomial of a weighted tree is given.
منابع مشابه
Some New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
متن کاملHosoya polynomials of random benzenoid chains
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
متن کاملComputing the Hosoya Polynomial of Graphs from Primary Subgraphs
The Hosoya polynomial of a graph encompasses many of its metric properties, for instance the Wiener index (alias average distance) and the hyper-Wiener index. An expression is obtained that reduces the computation of the Hosoya polynomial of a graph with cut vertices to the Hosoya polynomial of the so-called primary subgraphs. The main theorem is applied to specific constructions including bouq...
متن کاملThe Wiener Index and Hosoya Polynomial of a Class of Jahangir Graphs
In this paper, the Wiener Index ( ) ( ) { } ( ) ∑ ∈ = G V u v u v d G W , , and Hosoya polynomial ( ) ( ) { } ( ) ∑ ∈ = G V u v u v d x x G H , , , of a class of Jahangir graphs m J , 3 with exactly 1 3 + m vertices and m 4 edges are computed.
متن کاملHosoya polynomial of zigzag polyhex nanotorus
Abstract: The Hosoya polynomial of a molecular graph G is defined as ∑ ⊆ = ) ( } , { ) , ( ) , ( G V v u v u d G H λ λ , where d(u,v) is the distance between vertices u and v. The first derivative of H(G,λ) at λ = 1 is equal to the Wiener index of G, defined as ∑ ⊆ = ) ( } , { ) , ( ) ( G V v u v u d G W . The second derivative of ) , ( 2 1 λ λ G H at λ = 1 is equal to the hyper-Wiener index, d...
متن کامل